Planning for Successful Mass Timber Moisture Management

AIA Seattle Mass Timber Committee Meeting

March 8, 2022

Graham Finch, MASc, P.Eng Principal, Senior Building Science Specialist

Moisture Risks to Mass Timber Buildings

\rightarrow Exposure to moisture during construction

- \rightarrow Supply & delivery from factory to site
- \rightarrow Handling on site
- \rightarrow <u>Construction sequence after installed</u>

\rightarrow Exposure to moisture during operation

- Accidental large leaks (sprinklers/plumbing)
- \rightarrow Persistent small leaks
- \rightarrow Relative Humidity (too high or too low)

The 5 Risks to Mass Timber During Construction

Higher to lower likelihood of occurrence as a result of mass timber getting wet during construction

Many Different Solutions – How to Decide & Plan for Your Specific Project?

Solution: Planning for Moisture Management

STEP 1 - COMPLETE A MOISTURE RISK ASSESSMENT FOR MASS TIMBER ASSEMBLIES

Step 1: Assembly Considerations and Risk Assessment

What mass timber do you have, in what assembly, when will it potentially get wet & for how long?

RDH

What are options for appropriate level of possible protection factory or site applied that works with the final assembly, schedule, risk tolerance and budget?

Roof & roof decks

Floors, waterproof floors, composite floors

Walls

Assessment of Risk Changes through Construction

Mass timber components

Mass timber assemblies

Encapsulated Assemblies

Timing & Placement of Temporary Protection – Roofs & Roof Decks

Conventional roof – permanent AB/VB direct to mass timber is ideal temporary moisture protection membrane Inverted/protection membrane roof – temporary moisture protection often in supplement to final roofing membrane given slope and roofing membrane system requirements/sequencing

Timing & Placement of Temporary Protection – Floors

For a Floor, temporary protection membrane may be supplemental to assembly, or possibly part of acoustic assembly and separation from concrete topping Consideration for partial (i.e. tape strips) vs full membrane coverage approaches should consider myriad of various joints & interfaces to be sealed and sequencing on-site

\rightarrow Construction Schedule

- \rightarrow Length of exposure by element, floor by floor
- ightarrow Façade installation sequencing, synced or delayed
- ightarrow Roofing (temporary to final membrane protection)
- Anticipated Weather (Wetting & Drying Potential)
- \rightarrow Shipping, Storage & Installation Exposure Times
- Possible Water Management Strategies During Construction (hoarding, slope, drainage etc.)
- \rightarrow Encapsulation or Other Work Below
- \rightarrow Occupancy Phase Exposure & Protection Needs

Moisture Exposure Level

\rightarrow

High Exposure

- No roof above with precipitation expected during exposure duration, or
- Roof above but open perimeter with wind-driven \rightarrow precipitation expected during exposure duration.
- Extended exposure timeline that increases the risk \rightarrow of wetting potential.

LOW

Moderate Exposure

Roof above, but open at perimeter with periodic \rightarrow precipitation and limited risk of wind-driven rain.

Low Exposure

- Roof above with perimeter protected with tarps or \rightarrow hoarding, or
- Exposed during dry/drought season when \rightarrow precipitation is unlikely or limited enough to allow full drying of the mass timber.

- \rightarrow Various factory or site applied protection options
 - ightarrow Do nothing
 - \rightarrow Coatings, Membranes, Tapes of various types, chemistries and water repellant properties
 - \rightarrow Temporary vs Permanent
- \rightarrow Schedule and sequencing of protection
- What happens on-site with different types of protection
 - ightarrow Passive vs Active Measures

Protection Robustness

Low Protection Robustness (Water Resistant)

- \rightarrow Coatings, loose-laid protection, or targeted protection.
- \rightarrow Immediate action required in a wetting event.

Examples:

- \rightarrow Tape/Sealant only at joints
- → Factory coatings/sealers
- → Loose laid membranes (any type)

Low Robustness – Water Resistant and/or Limited Coverage

Protection Robustness

Low Protection Robustness (Water Resistant)

- \rightarrow Coatings, loose-laid protection, or targeted protection.
- \rightarrow Immediate action required in a wetting event.

Examples:

- → Tape/Sealant only at joints
- → Factory coatings/sealers
- \rightarrow Loose laid membranes (any type)

Moderate Protection Robustness (Water Shedding) E

- → Water-shedding/vapor-permeable membrane.
- \rightarrow Action required in a timely manner in a wetting event.

Examples:

- \rightarrow Vapor impermeable SAM
- → Vapor permeable SAM
- \rightarrow Coated sheathing with taped joints

MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE Effectiveness @ Field/Joints & Useful Lifespan

RDH

Protection Robustness

Low Protection Robustness (Water Resistant)

- \rightarrow Coatings, loose-laid protection, or targeted protection.
- \rightarrow Immediate action required in a wetting event.

Examples:

- \rightarrow Tape/Sealant only at joints
- → Factory coatings/sealers
- \rightarrow Loose laid membranes (any type)

Moderate Protection Robustness (Water Shedding) E

- → Water-shedding/vapor-permeable membrane.
- \rightarrow Action required in a timely manner in a wetting event.

HIGH

- High Protection Robustness (Waterproof)
- \rightarrow Waterproof membrane with heat-welded laps.
- \rightarrow No immediate action required in a wetting event.

Examples:

- → Vapor impermeable SAM
- \rightarrow Vapor permeable SAM
- \rightarrow Coated sheathing with taped joints

Examples:

➔ Roofing/waterproofing membranes (SBS, EPDM, PVC, TPO, fluid applied) – waterproof laps/joints critical

High Robustness = Waterproof to Standing Water -Reliable as a Temporary Roof

Robustness Impacted by Sequencing & Detailing and Length of Exposure

Moisture Exposure Level & Protection Robustness

RDH

Process Helps Make Risk Informed Decisions

Experiences with Factory Application to Mass Timber

Water repellant coatings

- \rightarrow Wax edge coatings optional, but common
- \rightarrow Top surface coatings optional, some hesitation by suppliers

- Self-adhered vapor permeable or impermeable <u>water-shedding</u> membranes
 - Optional can be challenged with space/time in factory for application, use of low VOC primers

- Self-adhered vapor impermeable <u>waterproof</u> roofing membranes
 - → Optional though less common can be challenged by separation of labor between factory and roofer (warranties), hot-work & heat welding laps, use of low VOC primers

Step 2: Construction Phase Moisture Management Planning

Now that I have designed and detailed the assembly, performed a risk assessment of options and selected a desired protection strategy, what do I plan for on-site? Create checklists, plans and other documents for use in Step 3

Active measures required onsite will depend on designed protection applied prior

Construction Phase Moisture Management Planning

- \rightarrow Schedule and Delivery Plans
- \rightarrow Moisture Protection Methods
- \rightarrow Water Removal Plans
- \rightarrow Checklists
- \rightarrow Moisture Exposure Response
- \rightarrow Contingencies
 - \rightarrow Tenting/Hoarding
 - \rightarrow Mechanical Drying
 - ightarrow Stain Removal
 - \rightarrow Sanding/finishing
 - \rightarrow Fungal Remediation

→Contracts & Scope of Various Parties

Moisture Management Tools & Decision Making

Robustness Level of Protection Guides Onsite Actions

RDH

Step 3: Execute the Moisture Management Plan

Plan Iterations & Mid Construction Updates are Okay!

Mass Timber Moisture Management Planning Video Course

RDH

www.learnbuildingscience.com

Continuing Education Opportunity

use code SEATTLEAIA at checkout

AIBC – 1.5 LU|HSW PHIUS CPHC – 1.5 CPHC CEU AIA – 1.25 Core LU

Discussion + Questions

Graham Finch gfinch@rdh.com

