Twin Lakes Landing

Project Location: Marysville, WA
Project Area: 42,097 sf
Project Cost: ~$10.2 million

Built on the shores of Gissberg Twin Lakes in Marysville, Twin Lakes Landing is a modular, affordable housing project designed for Housing Hope, a non-profit affordable housing agency that also focuses on delivering services to their tenants. Since its completion in 2017, it has been home to 50 families who were previously homeless.

The 2.5 acre site was long, narrow and challenging to fit the amount of units and parking required, stormwater treatment, open space, recreational space, fire separations, and other various necessities. Parking is concentrated along the north side, so that the internal community spaces and southern facing units can take full advantage of the lake views. A central community spine provides an organizing circulation path, while breakout spaces for grassy lawn, community gardens, and playground/social area provide opportunities for groups to gather and enjoy the outdoors. The buildings consist of fifty-four “boxes” fabricated in a plant in Boise, ID, and shipped to the site via semi-trailers. They came with the finish roof installed and air/weather barriers on the exterior walls for siding installation on site. All fifty-four boxes were installed in eight days, and saved an estimated 3.5 months of construction time.

Residents coming into Twin Lakes Landing are dealing with a myriad of issues related to self-image, self-reliance, dependency, and trust. Creating a space that is safe, calming, supportive and full of opportunity was the focus of this complex’s design. Spaces were created to support Housing Hope’s counseling and training programs as well as encourage residents to socialize, find respite, and feel good about themselves in a whole new way. An important aspect was to create outdoor family areas for safe play with good supervision, play equipment to spur the imagination and exercise the body, and areas where meeting by happenstance was common. In building community, you naturally develop people’s sense of themselves as individuals and as part of a larger entity. The goal was to make a place for individuals to grow confident and more likely to engage in the larger whole.

Built to Evergreen Sustainable Design Standards, this project is energy efficient and utilizes sustainable strategies such as efficient envelope, reduction of thermal bridging, efficient heating and ventilation systems, Energy Star appliances, solar shading, and use of sustainable materials. The project was designed to meet Passive House standards through Design Development, but funding limitations of an up-front investment cost of $700,000, or 6.23%, meant eliminating these strategies, which would have further reduced the long-term operating costs of the facility. The anticipated savings would have been $100,000 annually, or a seven year pay back.
VICINITY PLAN: UNDEVELOPED LOT

SITE LOCATION

Twin Lakes

Marysville, WA
SITE PLAN
Underground storm treatment infiltration beds are located under the parking lot and circulation/open spaces to clean runoff before it heads back into the local aquifer.
Design Achievements

- Project Complies With Evergreen Sustainable Development Standards (Esds V.2.2)
- Solar Sunshades On South Face Of South Buildings
- Native Plantings
- Aquifer replenishment
VIEW NORTH FROM GISSBERG TWIN LAKES
INTERNAL COURTYARD AND BALCONIES
EXTERIOR DESIGN: COMMUNITY GARDENS, PLAY AREA, AND COMMUNAL ENTRIES
EXTERIOR VIEWS
BUILDING UNIT: ENTRY TO KITCHEN, LIVING, BATH, AND BEDROOM VIEWS
NOTE:
CAN STILL SHIFT
THOSE 2 END
UNITS FOR
MODULATION
BY
BEDROOM DOOR
IN DIFF.
LOCATION
SEE
BANK C.

OLD: 12 BOXES
NEW: 10 BOXES

SAME AS ABOVE

BUILT TOGETHER
WITH 4' SACRIFICIAL
DECK BETWEEN
MODULAR CONSTRUCTION

This off-site construction reduced the construction duration and helped avoid inclement weather. The City of Marysville Design Standards required additional modulation, which was resolved with signage and planted green climbing-wall frames.
PRELIMINARY PASSIVE HOUSE CONSTRUCTION DETAILS

Preliminary Passive House design strategies, including a high-performance envelope, heat recovery, air sealing, and high efficiency lighting and appliances were developed and modeled, to achieve an energy consumption reduction of 75% when comparing EPA typical energy performance for Multifamily Housing.